Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes

Huanfeng Jiang,* Wei Zeng, Yibiao Li, Wanqing Wu, Liangbing Huang, and Wei Fu

School of Chemistr[y a](#page-3-0)nd Chemical Engineering, South China University of Technology, Guangzhou 510640, China

S Supporting Information

[AB](#page-3-0)STRACT: [A regioselecti](#page-3-0)ve synthesis of 2,5-disubstituted furans using copper(I) catalyst from haloalkynes in a one-pot procedure has been reported. This chemistry proceeds through the hydration reaction of 1,3 diynes, which can be readily prepared from the coupling reaction of haloalkynes in the presence of CuI. The procedure also can be used for the facile synthesis of 2,5-disubstituted thiophenes.

 \sum ubstituted furans and thiophenes are ubiquitous in biologically active molecules¹ and have also been used as building blocks for both betapequelic and acyclic compounds² building blocks for both heterocyclic and acyclic compounds.² Consequently, the synthesis o[f](#page-4-0) furans and thiophenes has attract[e](#page-4-0)d extensive interest. $3-5$ One continuing challenge among existing preparative methods is general access to the 2,5-disubstituted derivatives. [The](#page-4-0) discovery of new activation processes and selective transition-metal-catalyzed transformations of alkyne have significantly contributed to this field (Scheme 1).⁶ While these protocols represent stalwart advances in the preparation of 2,5-disubstituted furans, there are still opportun[it](#page-1-0)i[es](#page-4-0) to design methods with more easily accessible materials and routines.

Compared with noble-metal catalysts, copper-based methods have obvious economic attractiveness. The simple head-to-head dimerization of copper-based Glaser coupling is of special interest as a convenient way to build conjugated C4 units.⁷ The salts of copper can operate as Lewis acids activating carbon− carbon multi[pl](#page-4-0)e bonds via π -binding and make the σ -complexes with heteroatoms in the same fashion.⁸ Lewis acids promoted hydration of alkynes to carbonyl compounds is one of the most important and fundamental function[al](#page-4-0) group transformation methods,⁹ and the carbonyl compounds via alkyne hydration can be used as precursors of furans.¹⁰ Many metal complexes have pr[ov](#page-4-0)ed to be useful in alkyne hydration catalysis.^{6d,i,11} However, there are few examples of [cop](#page-4-0)per-catalyzed hydration of alkynes.¹² During our study on the cyclization rea[ction](#page-4-0) involving electron-deficient alkynes for synthesis of furans,¹³ we recently fo[cu](#page-4-0)sed on developing alkynes hydration to construct furans catalyzed by copper. Herein we report a novel syn[th](#page-4-0)esis of 2,5-disubstituted furans directly from haloalkynes or 1,3 diynes through sequential one-pot reactions. The procedure also can be used for the facile synthesis of 2,5-disubstituted thiophenes.

It has been demonstrated that haloalkynes are useful materials in organic reactions.¹⁴ Recently, our group has reported several nucleophilic additions, homocoupling reactions, and transition-metal-catal[yze](#page-4-0)d bond formation reactions of haloalkynes.¹⁵ Based on our previous results, we first studied the reaction of phenylethynyl bromide in DMF using CuI as the catalyst and 1,10-phen as the ligand. To our delight, the desired furan 3a was obtained in 65% GC yield (Table 1, entry 1). This result prompted us to screen suitable reaction conditions (Table 1). After solvent evaluation, we fo[un](#page-1-0)d that DMSO was the best solvent and afforded 3a with 80% GC yield (entry 2), while [oth](#page-1-0)er solvents just led to moderate or low yields (entries 1, 3, and 4). Further investigation revealed that the base played a critical role for this transformation (entries 5−9). Cs_2CO_3 , K_2CO_3 , and t-BuOK were ineffective and NaOH just gave moderate yields, while KOH was the best choice. The amount of KOH was then examined, and the best result was obtained by using 5.0 equiv of KOH, which gave 3a in 93% yield (entry 10). The effects of different copper salts were also studied (entries 10−13). CuI was found to be the best catalyst, and the yield reached 93% (entry 10).

Under the optimized conditions (Table 1, entry 10), the reaction was applied to a range of different substrates smoothly giving the corresponding products with mo[de](#page-1-0)rate to excellent yields, and the results are summarized in Table 2. Aromatic alkynyl bromides with either electron-donating or electronwithdrawing groups on the benzene ring were able [t](#page-1-0)o generate the corresponding products in excellent yields. The reaction conditions were compatible with alkyl, alkoxy, trifluoromethyl, and halogen groups on the benzene ring providing the corresponding products in good yields (3b−l). Fortunately, 2,5-diheterocyclic furans could be generated in the same way (3m,n). We also extended this reaction to phenylethynyl iodide as a substrate and found that the reaction occurred to give 3a in good yield (Scheme 2).

Compared with oxygen, sulfur proved to be a better match as a nucleophile for [th](#page-1-0)e diaryl/heterocycle diynes. Applying Na2S·9H2O instead of KOH successfully afforded the corresponding 2,5-disubstituted thiophenes (Table 3). Optimum reaction conditions were determined after a short screening. The best reaction conditions used DM[F](#page-2-0) as the solvent and a lower reaction temperature to 70 °C. In addition,

Received: April 4, 2012 Published: May 16, 2012

Table 1. Optimization of Reaction Conditions^a

	Br	Cu salt, base 1,10-phen, H_2O solvent, 80 °C, 6 h		
1a			3a	
entry	catalyst	solvent	base $(X$ equiv)	yield b (%)
1	CuI	DMF	KOH(3.0)	65
\mathfrak{p}	CuI	DMSO	KOH (3.0)	80
3	CuI	1,4-dioxane	KOH (3.0)	21
$\overline{4}$	CuI	toluene	KOH (3.0)	56
5	CuI	DMSO	$K_2CO_3(3.0)$	NR
6	CuI	DMSO	$Cs_2CO_3(3.0)$	NR.
7	CuI	DMSO	t -BuOK (3.0)	NR.
8	CuI	DMSO	NaOH(3.0)	69
9	CuI	DMSO	KOH (4.0)	85
10	CuI	DMSO	KOH(5.0)	93
11	CuCl	DMSO	KOH (5.0)	75
12	CuBr	DMSO	KOH (5.0)	72
13	CuCl ₂	DMSO	KOH (5.0)	NR

a
Reactions were carried out using bromoalkyne (0.5 mmol), Cu salt (5 mol %), 1,10-phen (15 mol %), H2O (4 mmol), solvent (2.5 mL), 80 $^{\circ}$ C, 6 h. $^{\circ}$ Determined by GC.

the amounts of CuI and 1,10-phen were increased to 15 and 20 mol %, respectively. Excellent regioselectivity was still observed. Both aromatic alkynyl bromides and heterocycle alkynyl bromides could generate the corresponding products in excellent yields. It is noteworthy that α -terthienyl (4e), which has anthelmintic and insecticidal activities, could be obtained with 78% yield in this way.

We conjectured that this reaction would occur through a 1,3 diyne intermediate. As shown in Table 4, we synthesized series of 1,3-diyne compounds. With 1,3-diynes as starting materials, the reaction successfully afforded t[he](#page-2-0) corresponding 2,5 disubstituted furans under the standard condtions. Unsymmetrical products can also be synthesized in this way (3o− s).The overall yield of 2,5-disubstituted furans are the same when alkynyl bromides were used as starting material (Table 4).

Table 2. Substrate Scope of 2,5-Disubstituted Furans via Cu-Catalyzed Reaction^a

^aReactions were carried out using bromoalkynes (0.5 mmol), CuI (5 mol %), 1,10-phen (15 mol %), KOH(5 mmol), H₂O (4 mmol), DMSO (2.5 mL) , 80 $^{\circ}$ C, 6 h. b Isolated yields.

Scheme 2. Cu-Catalyzed Reaction of Iodoalkyne

To gain a mechanistic insight into the process of this reaction, a series of competition experiments were conducted to test the effect of water. When anhydrous DMSO without the addition of water was used, the yield of 3a was low (Scheme 3), and the major product was 1,4-diphenylbuta-1,3-diyne. On the basis of previous reports^{6e[,](#page-2-0)16} and our experimental data, a plausible reaction mechanism for copper-catalyzed synthesis of furans and thiophenes is i[llustr](#page-4-0)ated in Scheme 4. First, the 1,3 diyne **B** could be generated from bromoalkyne **A** via $Cu(I)$ catalysis. The single alkyne hydration a[nd](#page-2-0) enol-ketone equilibrium provided D. Then the nucleophilic attack of carbonyl oxygen to the copper-coordinated alkyne may result in

Table 3. Substrate Scope of 2,5-Disubstituted Thiophenes via Cu-Catalyzed Reaction^a

^aReactions were carried out using bromoalkynes (0.5 mmol), CuI (15 mol %), 1,10-Phen (20 mol %), $Na_2S.9H_2O(2.5 \text{ mmol})$, DMF (2.5 mL), 70 $^{\circ}$ C, 6 h. b Isolated yields.

Table 4. Substrate Scope for Cu-catalyzed Reaction of 1,3- Diynes 2^a

%), 1,10-Phen (15 mol %), KOH(2.5 mmol), H₂O (2 mmol), DMSO (2.5 mL) , 80 °C, 6 h. b Isolated yields.

the formation of the resonance stabilized oxonium ion F, which could easily transfer to intermediate G. Finally, a rearrangement took place in which G was converted to furan product H with regeneration of the $Cu(I)$ catalyst.

In conclusion, we have established a facile and highly stereoselective method to synthesize 2,5-disubstituted furans from haloalkynes or 1,3-diynes in the presence of the CuI catalyst. Furthermore, we have shown that the procedure can be used for the facile synthesis of 2,5-disubstituted thiophenes. This approach can tolerate a broad range of aryl and heterocyclic groups and it is particularly useful as this is an

Scheme 4. Proposed Mechanism for the Synthesis of 2,5- Disubstituted Furans

easy access to conduct reaction with simple starting material in high-yielding reactions under mild conditions.

EXPERIMENTAL SECTION

General Methods. ¹H and ¹³C NMR spectra were recorded on a 400 MHz spectrometer using CDCl₃ as solvent and TMS as an internal standard. Mass spectra were obtained with a gas chromatograph−mass spectrometer.

Typical Procedure for the Synthesis of 2,5-Disubstituted Furans or Thiophenes. A mixture of phenylethynyl bromide 1 (0.5 mmol), CuI (4.8 mg, 5 mol %), 1,10-phen (13.5 mg, 15 mol %), KOH (140 mg, 5 equiv), and H_2O (7.2 mg, 4 mmol) in DMSO (2.5 mL) was placed in a test tube (10 mL) equipped with a magnetic stirring bar. The mixture was stirred at 80 °C for 6 h. After the reaction was complete, the mixture was filtered through a glass filter and washed with ethyl acetate. The mixture was washed with brine and extracted with ethyl acetate. The organic layer was dried $(MgSO₄)$, concentrated in vacuo, and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 20:1 to give the desired products.

2,5-Diphenylfuran (3a): 51.3 mg, 93%; ¹H NMR (400 MHz, CDCl₃) δ = 7.73–7.75 (m, 4H), 7.40 (t, J = 7.6 Hz, 4H), 7.24–7.28 $(m, 2H)$, 6.72 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 153.4$, 130.8, 128.7, 127.4, 123.8, 107.3; MS (EI) m/z 115, 165, 191, 220; IR $\nu_{\text{max}}(KBr)/cm^{-1}$ 1475, 1022, 796, 757, 689.

2,5-Di-p-tolylfuran (3b): 55.4 mg, 90%; ¹H NMR (400 MHz, CDCl₃) δ = 7.63 (d, J = 8 Hz, 4H), 7.20 (d, J = 8 Hz, 4H), 6.65 (s, 2H), 2.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 153.2, 137.1, 129.4, 128.2, 123.6, 106.4, 21.3; MS (EI) m/z 129, 205, 233, 248; IR ν_{max} (KBr)/cm⁻¹ 2924, 1486, 1022, 822, 791.

2,5-Di-m-tolylfuran (3c): 53.9 mg, 87%; ¹H NMR (400 MHz, CDCl₃) δ = 7.54–7.56 (m, 4H), 7.29 (t, J = 7.2 Hz, 2H), 7.08 (d, J = 8 Hz, 2H), 6.70 (s, 2H), 2.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 153.4, 138.3, 130.8, 128.6, 128.2, 124.3, 120.9, 107.1, 21.6; MS (EI) m/z 119, 129, 205, 248; IR ν_{max} (KBr)/cm⁻¹ 2920, 1478, 1026, 782, 697.

2,5-Bis(4-ethylphenyl)furan (3d): 62.1 mg, 90%; 1 H NMR (400 MHz, CDCl₃) δ = 7.65 (d, J = 8 Hz, 4H), 7.23 (d, J = 8.0 Hz, 4H), 6.66 (s, 2H), 2.66 (q, J = 7.2 Hz, 4H), 1.26 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 143.5, 128.5, 128.2, 123.7, 106.5, 28.7, 15.6; MS (EI) m/z 123, 207, 246, 261, 276; IR ν_{max} (KBr)/cm⁻¹ 2924, 1362, 1223, 832, 789.

2,5-Bis(4-fluorophenyl)furan (3e): 53.7 mg, 84%; ¹H NMR (400 MHz, CDCl₃) δ = 7.67–7.70 (m, 4H), 7.07–7.11 (m, 4H), 6.65 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.2 (d, J_{CF} = 245.6 Hz), 152.5, 127.1 (d, J_{CF} = 3.3 Hz), 125.4 (d, J_{CF} = 8.0 Hz), 115.8 (d, J_{CF} = 21.8 Hz), 106.9; MS (EI) m/z 95, 123, 133, 227, 256; IR ν_{max} (KBr)/ cm[−]¹ 1488, 1231, 1025, 831, 774.

2,5-Bis(4-chlorophenyl)furan (3f): 61.2 mg, 85% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.63 (d, J = 8 Hz, 4H), 7.35 (d, J = 8 Hz, 4H), 6.70 $(s, 2H)$; ¹³C NMR (100 MHz, CDCl₃) δ = 152.6, 133.2, 129.0, 129.0, 125.0, 107.8; MS (EI) m/z 111, 114, 149, 189, 225, 288; IR ν_{max} (KBr)/cm[−]¹ 1473, 1106, 1020, 831, 791.

2,5-Bis(2-chlorophenyl)furan (3g): 54.1 mg, 75%; 1 H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ $\delta = 7.95 \text{ (d, } J = 8 \text{ Hz}, 2\text{H}), 7.45 \text{ (d, } J = 8 \text{ Hz}, 2\text{H}),$ 7.34 (t, J = 7.6 Hz, 2H), 7.25 (s, 2H), 7.21 (t, J = 8 Hz, 2H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ $\delta = 149.7, 130.1, 130.3, 128.9, 128.2, 128.0, 126.9,$ 113.0; MS (EI) m/z 139, 149, 189, 225, 288; IR ν_{max} (KBr)/cm⁻¹ 1597, 1464, 1421, 1026, 747.

2,5-Bis(3-chlorophenyl)furan (3h): 49.0 mg, 68%; 1 H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ $\delta = 7.70 \text{ (s, 2H)}$, 7.58 $(d, J = 7.6 \text{ Hz}, 2H)$, 7.32 $(t, J = 7.6 \text{ Hz})$ J = 7.6 Hz, 2H), 7.22−7.24 (m, 2H), 6.74(s, 2H); 13C NMR (100 MHz, CDCl₃) δ = 152.4, 134.8, 132.1, 130.0, 127.5, 123.8, 121.9, 108.4; MS (EI) m/z 111, 139, 149, 189, 225, 252, 288; IR ν_{max} (KBr)/ cm[−]¹ 1579, 1470, 1026, 774, 686.

2,5-Bis(4-bromophenyl)furan (3i): 67.1 mg, 71% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.59 (d, J = 8 Hz, 4H), 7.52 (d, J = 8 Hz, 4H), 6.73 $(s, 2H)$; ¹³C NMR (100 MHz, CDCl₃) δ = 152.7, 131.9, 129.5, 125.2, 121.3, 107.9; MS (EI) m/z 114, 157, 189, 269, 378; IR ν_{max} (KBr)/ cm[−]¹ 1582, 1401, 1070, 1006, 824, 792.

2,5-Bis(4-(trifluoromethyl)phenyl)furan (3j): 65.9 mg , 74% ; ^1H NMR (400 MHz, CDCl₃) δ = 7.82(d, J = 8.2 Hz, 4H), 7.65(d, J = 8 Hz, 4H), 6.86(s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.8, 133.4, 129.4(q, $J_{C,F}$ = 32.4 Hz), 125.8(q, $J_{C,F}$ = 3.9 Hz), 124.1(q, $J_{C,F}$ = 270.2 Hz), 123.9, 109.3; MS (EI) m/z 145, 183, 259, 337, 356; IR ν_{max} (KBr)/cm[−]¹ 1614, 1324, 1108, 837, 778.

2,5-Bis(4-methoxyphenyl)furan (3k): 59.5 mg, 85% ; 1 H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ $\delta = 7.66$ $(d, J = 8.8 \text{ Hz}, 4\text{H})$, 6.94 $(d, J = 8.8 \text{ Hz},$ 4H), 6.57 (s, 2H), 3.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 158.9, 152.8, 125.0, 124.1, 114.2, 105.6, 55.4; MS (EI) m/z 140, 165, 194, 222, 250, 265, 280; IR $\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1}$ 2924, 1601, 1508, 1252, 1043.

2,5-Bis(4-ethoxyphenyl)furan (3l): 54.7 mg, 71% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.64 (d, J = 8.8 Hz, 4H), 6.92 (d, J = 8.8 Hz, 4H), 6.56 (s, 2H), 4.07 (q, J = 7.2 Hz, 4H), 1.43 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 158.3, 152.8, 125.0, 124.0, 114.7, 105.5, 63.5, 14.8; MS (EI) m/z 165, 194, 223, 251, 279, 308; IR ν_{max} (KBr)/cm[−]¹ 2926, 2856, 1602, 1509, 1253, 1041.

2,5-Di(thiophene-2-yl)furan (3m): 48.7 mg, 84% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.29–7.30 (m, 2H), 7.21–7.22 (m, 4H), 7.02–7.04 (m, 2H), 6.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 148.6, 133.5, 127.7, 124.2, 122.7, 107.2; MS (EI) m/z 111, 121, 171, 203, 232; IR ν_{max} (KBr)/cm⁻¹ 1509, 1458, 1417, 1002, 793, 697.

2,5-Di(pyridin-2-yl)furan (3n): 41.6 mg, 75% ; 1 H NMR (400 MHz, CDCl₃) δ = 8.62–8.63 (m, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.75 (t, J = 7.6 Hz, 2H), 7.21 (s, 2H), 7.17−7.20 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ = 154.1, 149.7, 149.1, 136.7, 122.2, 118.9, 111.1; MS (EI) m/z 78, 89, 116, 148, 193, 222; IR ν_{max} (KBr)/cm⁻¹ 1699, 1579, 1466, 1010, 777.

2-(4-Methoxyphenyl)-5-phenylfuran (30): 57.5 mg, 92% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.2 (d, J = 7.2 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.22–7.26 (m, 1H), 6.93 (d, J = 8.8 Hz, 2H), 6.70 (d, $J = 3.6$ Hz, 1H), 6.58 (d, $J = 3.6$ Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 159.1, 153.5, 152.7, 130.9, 128.7, 127.1, 125.2, 123.9, 123.6, 114.2, 107.2, 105.7, 55.4; MS (EI) m/z 125, 152, 178, 235, 250; IR ν_{max} (KBr)/cm⁻¹ 2929, 1599, 1499, 1250, 1026, 832, 759.

2-(4-Chlorophenyl)-5-(4-methoxyphenyl)furan (3p): 63.9 mg, 90%; ¹H NMR (400 MHz, CDCl₃) δ = 7.62–7.66 (m, 4H), 7.34 (d, J $= 8.4$ Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 3.6 Hz, 1H), 6.58 (d, J = 3.6 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 159.3, 153.8, 151.6, 132.6, 129.4, 128.9, 125.3, 124.7, 123.7, 114.2, 107.7, 105.7, 55.4; MS (EI) m/z 178, 241, 269, 284; IR ν_{max} (KBr)/ cm[−]¹ 2960, 1478, 1363, 1252, 1026, 833, 787.

2-(4-Fluorophenyl)-5-(4-methoxyphenyl)furan (3q): 58.3 mg, 87%; ¹H NMR (400 MHz, CDCl₃) δ = 7.64–7.70 (m, 4H), 7.08 (t, J $= 8.8$ Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.63 (d, J = 3.6 Hz, 1H), 6.57 (d, J = 3.6 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.0 (d, J_{CF} = 245.3 Hz), 159.1, 153.5, 151.9, 127.3 (d, J_{CF} = 3.3 Hz), 125.3 (d, $J_{C,F}$ = 7.9 Hz), 125.2, 123.8, 115.7 (d, $J_{C,F}$ = 21.8 Hz), 114.2, 106.7, 105.7, 55.4; MS (EI) m/z 95.0, 123.0, 170.0, 196.0, 225.0, 253.0, 268.0; IR ν_{max} (KBr)/cm⁻¹ 2923, 1489, 1253, 1026, 838, 786.

2-(4-Methoxyphenyl)-5-(thiophene-2-yl)furan (3r): 44.8 mg, 70%; ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (d, J = 8.8 Hz, 2H), 7.28−7.29 (m, 1H), 7.20−7.21 (m, 1H), 7.02−7.04 (m, 1H), 6.93 (d, J $= 8.8$ Hz, 2H), 6.55 (s, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 159.2, 153.1, 148.4, 134.0, 127.7, 125.2, 123.8, 123.7, 122.2, 114.2, 107.2, 105.6, 55.4; MS (EI) m/z 128, 152, 184, 213, 241, 25; IR ν_{max} (KBr)/cm⁻¹ 2929, 1503, 1250, 1026, 832, 783, 702.

2-(4-Methoxyphenyl)-5-p-tolylfuran (3s): 55.44 mg, 84% ; 1 H NMR (400 MHz, CDCl₃) δ = 7.66 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 7.19 (d, $J = 8.0$ Hz, 2H), 6.92 (d, $J = 8.8$ Hz, 2H), 6.64 (d, J $= 3.6$ Hz, 1H), 6.57 (d, J = 3.6 Hz, 1H), 3.82 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 159.0, 153.1, 153.0, 137.0, 129.4, 128.3, 125.1, 124.0, 123.6, 114.2, 106.5, 105.6, 55.4, 21.3; MS (EI) m/z 91, 152, 178, 221, 249, 264; IR ν_{max} (KBr)/cm⁻¹ 2923, 1488, 1250, 1028, 830, 787.

2,5-Diphenylthiophene (4a): 54.3 mg, 92%; ¹H NMR (400) MHz, CDCl₃) δ = 7.62 (d, J = 7.6 Hz, 4H), 7.39 (t, J = 7.8 Hz, 4H), 7.26−7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 143.6, 134.3, 128.9, 127.5, 125.7, 124.0; MS (EI) m/z: 134, 165, 191, 202, 221, 236; IR ν_{max} (KBr)/cm⁻¹ 1452, 1329, 803, 749, 685.

2,5-Di-p-tolylthiophene (4b): 57.4 mg, 87%; ¹H NMR (400) MHz, CDCl₃) δ = 7.50 (d, J = 8.0 Hz, 4H), 7.21 (s, 2H), 7.17 (d, J = 7.6 Hz, 4H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 143.3, 137.3, 131.7, 129.6, 125.5, 123.5, 21.2; MS (EI) m/z 115, 171, 215, 264; IR ν_{max} (KBr)/cm⁻¹ 2917, 1457, 1366, 797.

 $2,$ 5-Bis(4-fluorophenyl)thiophene (4c): 50.3 mg , 74% ; ^1H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ $\delta = 7.55 - 7.59 \text{ (m, 4H)}, 7.19 \text{ (s, 2H)}, 7.08 \text{ (t, J)}$ 8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.3 (d, $J_{C,F}$ = 246.0 Hz), 142.5, 130.5 (d, $J_{C,F} = 3.4$ Hz), 127.3 (d, $J_{C,F} = 7.9$ Hz), 124.0, 115.9 (d, $J_{C,F} = 21.7$ Hz); MS (EI) m/z 133, 152, 176, 238, 272; IR νmax (KBr)/cm[−]¹ 1513, 1456, 1408, 1101, 834, 797.

 $2,5$ -Bis(4-chlorophenyl)thiophene (4d): 54.0 mg, 71% ; 11 H NMR (400 MHz, CDCl₃) δ = 7.53 (d, J = 8.4 Hz, 4H), 7.35 (d, J $= 8.4$ Hz, 4H), 7.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 142.7$, 133.4, 132.6, 129.1, 126.8, 124.4; MS (EI) m/z 114, 155, 168, 189, 234, 304; IR ν_{max} (KBr)/cm⁻¹ 1511, 1454, 1105, 828, 799.

 α -Terthienyl (4e): 48.4 mg, 78%; ¹H NMR (400 MHz, CDCl₃) δ $= 7.16$ (d, J = 9.2 Hz, 2H), 7.13 (d, J = 3.6 Hz, 2H), 7.03 (s, 2H), 6.97 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 137.2, 136.3, 127.9, 124.5, 124.4, 123.8; MS (EI) m/z 127, 171, 203, 216, 248; IR ν_{max} (KBr)/cm⁻¹ 1422, 1057, 831, 796, 682.

2,5-Di(pyridin-2-yl)thiophene (4f): 47.0 mg, 79%; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ $\delta = 8.59 \text{ (d, } J = 4.8 \text{ Hz}, 2H)$, 7.66–7.69 (m, 4H), 7.63 (s, 2H), 7.14–7.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 152.4, 149.6, 146.0, 136.7, 125.7, 122.1, 119.0; MS (EI) m/z 78, 89, 116, 160, 205, 238; IR ν_{max} (KBr)/cm^{−1} 1581, 1458, 1427, 1295, 776.

■ ASSOCIATED CONTENT

S Supporting Information

H and 13C NMR of compounds 3a−s and 4a−f. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: jianghf@scut.edu.cn.

Notes

The auth[ors declare no comp](mailto:jianghf@scut.edu.cn)eting financial interest.

■ ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (20932002), National Basic Research Program of China (973 Program) (2011CB808600), Guangdong Natural Science Foundation (10351064101000000), China Postdoctoral Science Foundation (2011M501318), and the Fundamental Research Funds for the Central Universities (2012ZB0011) for financial support.

■ REFERENCES

(1) (a) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838−3848. (b) Chakraborty, T. K.; Arora, A.; Roy, S.; Kumar, N.; Maiti, S. J. Med. Chem. 2007, 50, 5539−5542.

(2) (a) Palmer, L. I.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2011, 50, 7167−7170. (b) Boutelle, R. C.; Northrop, B. H. J. Org. Chem. 2011, 76, 7994−8002. (c) Tseng, P. W.; Kung, C. Y.; Chen, H. Y.; Chou, C. H. J. Org. Chem. 2011, 76, 8440−8446.

(3) For a review, see: (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395−3442. (b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127−2198. (c) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem. Soc. Rev. 2000, 29, 109−118.

(4) Selected recent furan syntheses: (a) Haines, N. R.; VanZanten, A. N.; Cuneo, A. A.; Miller, J. R.; Andrews, W. J.; Carlson, D. A.; Harrington, R. M.; Kiefer, A. M.; Mason, J. D.; Pigza, J. A.; Murphree, S. S. J. Org. Chem. 2011, 76, 8131−8137. (b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645−7655. (c) Cho, C. H.; Larock, R. C. ACS. Comb. Sci. 2011, 13, 272−279. (d) Schmidt, B.; Geiβler, D. Eur. J. Org. Chem. 2011, 4814−4822. (e) Yin, G.; Wang, Z.; Chen, A.; Gao, M.; Wu, A.; Pan, Y. J. Org. Chem. 2008, 73, 3377− 3383. (f) Bustelo, E.; Dixneuf, P. H. Adv. Synth. Catal. 2007, 349, 933−942.

(5) Selected recent thiophene syntheses: (a) Nandi, G. C.; Samai, S.; Singh, M. S. J. Org. Chem. 2011, 76, 8009−8014. (b) O'Connor, C. J.; Roydhouse, M. D.; Przybyl, A. M.; Wall, M. D.; Southern, J. M. J. Org. Chem. 2010, 75, 2534−2538. (c) Grainger, R. S.; Patel, B.; Kariuki, B. M.; Mal., L.; Spencer, N. J. Am. Chem. Soc. 2011, 133, 5843−5852. (d) Kaleta, Z.; Makowski, B. T.; Soós, T.; Dembinski, R. Org. Lett. 2006, 8, 1625−1628.

(6) (a) Dheur, J.; Sauthier, M .; Castanet, Y.; Mortreux, A. Adv. Synth. Catal. 2010, 352, 557−561. (b) Zhang, M.; Jiang, H. F.; Neumann, H.; Beller, M.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2009, 48, 1681−1684. (c) Lenden., P.; Entwistle, D. A.; Willis, M. C. Angew. Chem., Int. Ed. 2011, 50, 10657−10660. (d) Nun, P.; Dupuy, S.; Gaillard, S.; Poater, A.; Cavallo, L.; Nolan, S. P. Catal. Sci. Technol. 2011, 1, 58−61. (e) Kel'in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95−98. (f) Rao, H. S. P.; Jothilingam, S. J. Org. Chem. 2003, 68, 5392−5394. (g) Aponick, A.; Li, C. Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11, 4624−4627. (h) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002−5005. (i) Kramer, S.; Madsen, J. L. H.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2010, 12, 2758−2761.

(7) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422−424.

(8) Yamamoto, Y. J. Org. Chem. 2007, 72, 7817−7831.

(9) Hudrlik, P. F.; Hudrlik, A. M. The Chemistry of the Carbon− Carbon Triple Bond; Patai, S., Ed.; Wiley: New York, 1978; Vol. 1.

(10) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149− 6153.

(11) (a) Boeck, F.; Kribber, T.; Xiao, L.; Hintermann, L. J. Am. Chem. Soc. 2011, 133, 8138−8141. (b) Marion, N.; Ramón, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448−449. (c) Chevallier, F.; Breit, B. Angew. Chem., Int. Ed. 2006, 45, 1599−1602.

(12) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046−16047.

(13) (a) Cao, H.; Jiang, H.; Yao, W.; Liu, X. Org. Lett. 2009, 11, 1931−1933. (b) Liu, W.; Jiang, H.; Zhang, M.; Qi, C. J. Org. Chem. 2010, 75, 966−968. (c) Jiang, H.; Yao, W.; Cao, H.; Huang, H.; Cao, D. J. Org. Chem. 2010, 75, 5347−5350. (d) Wen, Y.; Zhu, S.; Jiang, H.; Wang, A.; Chen, Z. Synlett 2011, 1023−1027.

(14) Trofimov, A.; Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 13538−13539.

(15) (a) Li, Y.; Liu, X.; Jiang, H.; Feng, Z. Angew. Chem., Int. Ed. 2010, 49, 3338−3341. (b) Li, Y.; Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Angew. Chem., Int. Ed. 2011, 50, 6341−6345. (c) Chen, Z.;

Jiang, H.; Wang, A.; Yang, S. J. Org. Chem. 2010, 75, 6700−6703. (d) Chen, Z.; Jiang, H.; Li, Y.; Qi, C. Chem. Commun. 2010, 46, 8049− 8051. (e) Chen, Z.; Li, J.; Jiang, H.; Zhu, S.; Li, Y.; Qi, C. Org. Lett. 2010, 12, 3262−3265.

(16) Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531−4534.